Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries

نویسندگان

  • Chang-Wook Lee
  • Quan Pang
  • Seungbum Ha
  • Lei Cheng
  • Sang-Don Han
  • Kevin R. Zavadil
  • Kevin G. Gallagher
  • Linda F. Nazar
  • Mahalingam Balasubramanian
چکیده

The lithium-sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium-sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium-sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium-sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation-dissolution chemistries, lithium-sulfur and beyond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries

wileyonlinelibrary.com lower than counterpart anodes. [ 5–7 ] The energy density of current lithium ion batteries is mainly limited by cathode materials. Due to a high theoretical capacity of 1672 mAh g −1 , sulfur has been considered as the next generation cathode for high energy Li-ion batteries, [ 8–12 ] and it has attracted considerable research interest from both academy and industry. Howe...

متن کامل

Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries

Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4-8) intermediates, leading to capacity fading, self-discharge, and a mu...

متن کامل

Improving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure

Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...

متن کامل

High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes

Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible oper...

متن کامل

Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy

The formation of lithium dendrites induces the notorious safety issue and poor cycling life of energy storage devices, such as lithium-sulfur and lithium-air batteries. We propose a surface energy model to describe the complex interface between the lithium anode and electrolyte. A universal strategy of hindering formation of lithium dendrites via tuning surface energy of the relevant thin film ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017